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EXECUTIVE SUMMARY 

      The development of connected autonomous vehicles (CAVs) has received a lot of 

attention in recent years, presumably as a result of the exponential rise in the use of 

artificial intelligence techniques in a wide range of fields. Utilizing cooperative adaptive 

cruise control (CACC), CAVs can significantly assist traffic engineers in managing traffic 

flow and reducing traffic congestion on road networks. 

 

  The Intelligent Transportation System (ITS) has been proven capable of effectively 

addressing traffic congestion issues. Timely traffic prediction is undoubtedly a crucial 

component for CAVs to operate more effectively, increase mobility, and reduce traffic 

congestion. A thorough review of the extant literature strongly implies that the focus of 

CAVs research has switched away from traditional statistics and optimization models 

toward adaptive machine learning methods. Due to the non-linear and complex 

correlations inherent in the spatiotemporal data collected from sensors, it is conceivable 

that existing machine learning models cannot be easily developed and directly applied in 

this situation. 

 

  This project builds a framework for predicting traffic speed based on multiple deep 

learning models using the Caltrans Performance Measurement System (PeMS) data. 

Additionally, this project establishes a simulation environment for CAVs, and compares the 

traditional car-following model with deep learning methods in terms of multiple 

performance metrics. The results indicate that both supervised learning and unsupervised 

learning are superior to the simulation-based model on the freeway. And the deep learning 

networks are almost identical to one another. Besides, it reveals that all models have their 

latent features for different time dimensions under the low traffic conditions, transition 

states, and heavy traffic conditions. Traffic engineers and other interested parties may 

benefit from the project’s findings in traffic operation and management, such as bottleneck 

identification, platooning control and route planning. 
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Chapter 1. Introduction 

1.1  Problem Statement 

  The continuous growth in the number of vehicles leads to various mobility issues in 

the current transportation system, such as increased traffic congestion and high commuting 

time. Benefiting from the increasing popularity and deployment of artificial intelligence 

technology, CAVs (i.e, connected and autonomous vehicles) are supposed to alleviate 

traffic congestion. For CAVs to conduct effectively and improve mobility, real-time 

prediction of traffic speed is undoubtedly essential to the entire Intelligent Transportation 

System (ITS). 

 

     Accurate speed prediction can help efficiently control traffic in advance and 

short-term forecasting has gained popularity due to its adaptability (Liu et al., 2021). An 

overview of existing literature indicates that traffic prediction tasks have shifted from 

statistical models to adaptive machine learning (ML) methods (Miglani and Kumar, 2019). 

Furthermore, with enhanced data storage capacities, more historical data may be converted 

into meaningful information for data-driven models. However, due to the nonlinearity 

between the high-dimensional spatiotemporal data collected from sensors, shallow ML 

techniques may be unsatisfactory in the intelligent driving environment, especially as the 

forecasting horizon increases (Yu et al., 2017). This inspires researchers to address time 

series traffic prediction using deep learning (DL) methods and explore improved results 

(Lv et al., 2014; Tian and Pan, 2015; Fu et al., 2016). 

 

      Driving behavior on the road is determined by an individual’s decision in current 

traffic circumstances using previous experience. In contrast to human-driven cars, where 

driving behavior is usually uncertain and can only be estimated via massive data from 

roadside units (RSUs), the control algorithms of CAVs may be predictable (Gora et al., 

2020). However, the requirement for specialized infrastructure and robust algorithms 

during execution make traffic prediction costly in a real ITS environment. The Intelligent 

Driver Model (IDM) is a widely used car-following model to forecast the vehicle status in 

an intelligent collision-free manner and modify its behavior as desired (Helbing et al., 

2009). Besides, the vehicle-road synergy is still in its initial phase, with fewer 

scenario-based, large-scale tests, and comprehensive frameworks in place (Do et al., 2019). 
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Hence, it is necessary to develop a simulated environment to control CAVs at various 

levels. 

      This project focuses on the traffic speed prediction task based on emerging deep 

neural networks (DNNs) using ground truth data. It also establishes a simulation 

environment for CAVs and compares the traditional IDM model with deep learning 

methods for their prediction accuracy in terms of multiple evaluation metrics. The findings 

can greatly help researchers and traffic engineers better improve dynamic traffic 

management. Platooning control, route planning and signal optimization are some of the 

potential applications for traffic speed prediction results. 

1.2  Objectives 

      The main objective of this research project is to enhance the accuracy of traffic 

speed prediction in ITS. The objectives of this project include: 

(1) Conducting a comprehensive review of traffic prediction techniques for CAVs. 

 

(2) Identifying a potential freeway segment and collecting the features of  

the selected scenario. 

 

(3) Developing and applying a logically intelligent car-following model that can 

describe CAVs on the highway mainline. 

 

(4) Predicting the average traffic speed in the CAVs environment on the freeway, and 

comparing the performance of emerging deep learning technology with the existing 

car-following models. 

1.3 Expected Contributions 

  In this project, the expected contributions are summarized as follows: 

(1) Reviewing the existing public datasets for traffic prediction. Also, traffic 

simulation models for CAVs and state-of-art traffic prediction techniques are introduced. 

 

(2) Aiming at the spatiotemporal problems of deep learning technology, multiple 

Solution methods are proposed to realize real-time prediction. 

 

(3) A simulation environment is established for CAVs to predict freeway speed and  
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compare the traditional car-following model with deep learning methods for their 

prediction accuracy in terms of multiple evaluation metrics. 

 

(4) Investigating the latent features of different models during various time 

dimensions under the low traffic loads, transition states, and heavy traffic loads. 

1.4  Report Overview 

  In this chapter, the background and motivation of the project have been discussed, 

followed by the research objectives and expected contributions. 

 

  Chapter 2 presents the systematic literature review. A keyword-based (connected 

and autonomous vehicles, traffic prediction, machine learning) search is conducted to 

identify existing highly relevant studies from the search results. A series of previous 

studies using traditional and deep learning methods for traffic prediction are investigated. 

Public datasets and microscopic simulation-based studies for CAVs are also presented. 

 

      Chapter 3 describes traffic prediction techniques used in this project. Given that 

traffic forecasting is a spatial and temporal process, deep learning (DL) techniques has 

been demonstrated to be an effective alternative to conventional methods. In order to 

reflect the car-following behavior of the CAVs, a model that can correctly characterize the 

driving behavior of the CAVs is developed, i.e., the Intelligent Driver Model (IDM), in 

which each parameter represents an actual meaning.  

 

  Chapter 4 identifies potential freeway segment and collects necessary traffic data 

related to the selected segment on the freeway. The California Department of 

Transportation (Caltrans) Performance Measurement System (PeMS) database is used as 

the data source for the potential freeway segment. In order to improve performance results, 

multiple evaluation metrics are used. 

 

  Chapter 5 shows the detailed outcomes of the suggested models. Two deep learning 

models, supervised deep neural network represented by Gated Recurrent Units (GRU) and 

unsupervised deep neural network represented by Stacked Autoencoders (SAEs), and the 

Intelligent Driver Model’s prediction errors are discussed for various time dimensions 

under the low traffic loads, transition states, and heavy traffic loads. 
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  Chapter 6 describes the conclusion of the prediction performance of different 

models. Additionally, instructions for future work are also given. 
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Chapter 2. Literature Review 

2.1 Introduction 

The current state-of-the-art and state-of-the-practice databases, microscopic traffic 

simulation models, and different approaches to predict the traffic speed under the 

connected and autonomous vehicles (CAVs) environment are all thoroughly reviewed in 

this chapter. This should give a comprehensive picture of the current CAV-based traffic 

speed prediction methods, potential freeway scenarios, and simulation environments. This 

is intended to provide a solid reference in formulating traffic data analysis and developing 

effective strategies for future tasks. 

 

The most popular databases that can be used for research in CAVs, including PeMS 

and NGSIM, are introduced in Section 2.2. The models for microscopic traffic simulations 

that take connected and autonomous vehicles into account are described in Section 2.3. 

SUMO receives special consideration because it can measure the operational status of 

CAVs. Several prior studies that used simulation methods for modeling the CAVs, such as 

IDM, ACC, and CACC, are investigated and presented as well to gain a better 

understanding of the simulation methods. Section 2.4 presents conventional techniques and 

definitions of deep learning technologies, followed by the currently employed 

methodologies, allowing readers to compare various prediction techniques.  

2.2 Traffic Databases for CAVs 

The field of transportation spans numerous academic disciplines. Only a tiny number 

of professional data sets have been made available to the general public due to issues 

including confidential data and uneven recognition in the industry. The two popular 

databases used in the field of intelligent transportation systems will be described in the 

paragraphs that follow. 

2.2.1 Caltrans Performance Measurement System (PeMS) 

2.2.1.1. The Introduction of PeMS 

PeMS that gives customers access to both real-time and historical traffic data, was 

initially established in 1999 as a university research project. All of California’s main 

urban cities’ motorway systems have roughly 40,000 separate detectors that collect 
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data every 30 seconds. The majority of PeMS’s detecting tools are inductive loops. 

The inductive loops are placed at particular points on the motorway, and data is 

recorded by a controller in a cabinet on the side of the road. Other data sets can 

potentially provide information to the PeMS database. The Caltrans Districts offer the 

information on detector setup. Information on highway layout, such as the number of 

lanes, and incident data are provided by Caltrans Headquarters (i.e., number of 

collisions and type of collisions). 

 

From the flow and occupancy information, the average vehicle speeds are determined 

using the g-factor (effective vehicle length). To produce precise speed estimations, 

PeMS computes the g-factor for each loop using an adaptive method. The technique 

has been examined and verified using “ground truth” data from floating automobiles 

and double loop detectors (Jia et al., 2001). Users must create an online account on the 

PeMS webpage in order to use PeMS. After that, users may access the PeMS database 

for free using a regular internet browser. 

 

2.2.1.2. The Applications of PeMS  

 

PeMS uses sensor data to calculate traffic amounts and other performance metrics. 

They include information on speed, vehicle-hours of delay, vehicle miles traveled, and 

trip time. For research projects and other goals related to transportation planning, the 

PeMS data can be used as an input into simulation models. Users can also utilize 

PeMS data to calibrate models, resulting in clear findings that take into account the 

actual traffic situation. Users may conduct both basic and complex traffic studies using 

PeMS, including highway operating assessments, bottleneck identification, calculating 

the Level of Service, evaluating advanced control measures, and assessing incident 

impacts. Managers can at any moment obtain a consistent, in-depth evaluation of the 

functioning of the highway. Having information about the status of the motorway 

network at the moment can help traffic engineers make informed operating choices. 

Planners can decide if congestion bottlenecks can be eliminated by making small 

capital upgrades or by enhancing operations. The most recent shortest route and 

estimated journey times are available to travelers. Researchers can calibrate simulation 

models and validate their theories.  

 

Several versions of sub-data sets (PeMSD3/4/7(M)/7/8/-SF/-BAY) have appeared and 

have been widely used. The main difference lies in the scope of time and space, and 

the number of sensors. 
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 PeMSD3: This data set is processed by Song et al. It includes 358 sensors and 

flow information from September 1, 2018 to November 30, 2018. 

 PeMSD4: It describes the San Francisco Bay Area and contains 3848 sensors 

on 29 roads from January 1, 2018 to February 28, 2018, for a total of 59 days. 

 PeMSD7(M): Describes the 7 districts of California, with a total of 228 

stations, and the time range is the working days of May and June 2012. 

 PeMSD7: This version is publicly released by Song et al. It contains traffic 

flow information on 883 sensor stations, covering the period from July 1, 

2016 to August 31, 2016.  

 PeMSD8: It depicts the San Bernardino area and contains 1979 sensors on 8 

roads from July 1, 2016 to August 31, 2016, for a total of 62 days. 

 PeMSD SF: This data set describes the occupancy rate of different lanes of 

the San Francisco Bay Area highway, between 0 and 1. The time span of these 

measurements is from January 1, 2008 to March 30, 2009, with samples being 

taken every 10 minutes. 

 PeMSD-BAY: It contains 6 months of traffic speed statistics, from January 1, 

2017 to June 30, 2017, including 325 sensors in the Bay Area. 

 

2.2.1.3 Other Datasets on the Freeway 

 

 METR-LA: It recorded traffic speed statistics for the four months from March 1, 

2012 to June 30, 2012, including 207 sensors on highways in Los Angeles County. 

 LOOP: It was collected from loop detectors on four connected highways (I-5, 

I-405, I-90, and SR520) in the greater Seattle area. It contains the traffic status 

data of 323 sensor stations in the whole year of 2015 at 5-minute intervals.  

 Los-loop: This data set was collected in real time by a loop detector on a highway 

in Los Angeles County. Including 207 sensors, its traffic speed collection time is 

from March 1, 2012 to March 7, 2012. These traffic speed data are summarized 

every 5 minutes.  

 

Table 1 compares the forecast accuracies on various tasks including travel time, flow, 

speed, occupancy, and traffic demand. It is clear that, compared to other tasks, which 

have accuracy rates that are near to 80%, the speed prediction may achieve an overall 

accuracy rate of more than 90%. 
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Table 1. Statistics Prediction for Different Tasks 

Task Dataset Time 

interval 

(min) 

Prediction 

window (min) 

MAPE (%) RMSE  

Flow PeMSD3 5 60 16.78 (Song et al., 2020) 29.21 

PeMSD4 5 60 11.09 (Shi et al., 2020) 31 

PeMS07 5 60 10.21 (Song et al., 2020) 38.58 

PeMSD8   5 60 8.31 (Shi et al., 2020) 24.74 

Speed METR- 

LA  

5 5/15/30/60 4.90 (Chen et al., 

2019)/6.80/8.30/10.00 

(Chen et al., 2020) 

3.57/5.12/6.17/

7.30 

PeMS- 

BAY 

5 15/30/60 2.73 (Wu et al., 

2019)/3.63 (Zheng et al., 

2020)/4.31 (Zheng et al., 

2020) 

2.74/3.70/4.32 

PeMSD7 

(M)  

5 15/30/45 5.24/7.33/8.69 (Yu et al., 

2018) 

4.04/5.70/6.77 

Los-loop 5 15/30/45/60 - 5.12/6.05/6.70/

7.26 (Zhao et 

al., 2019) 

LOOP 5 15/30/45/60 6.01 (Cui et al., 2019) 4.63 

Occupan

cy 

PeMSD-

SF 

60 7 rolling time 

windows (24 

time-points at a 

time) 

16.80 (Sen et al., 2019) - 
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2.2.2. Next Generation Simulation (NGSIM) 

 2.2.2.1 The Overview of NGSIM     

Even though a lot of the microsimulation models in use today are reliable and they 

offer a variety of analysis choices, there are still significant gaps and restrictions that 

can impact how accurate the results of these models are. The Next Generation 

Simulation (NGSIM) initiative was introduced by FHWA’s Traffic Analysis Tools 

Program to help increase the usage of microsimulation systems and guarantee the tools 

produce correct findings (U.S. Federal Highway Administration, 2006).  

 

The NGSIM datasets were initially gathered with the use of cameras and were then 

taken out of the resultant recordings. The NGSIM trajectory samples every 0.1 seconds, 

and each sample contains data such as the vehicle’s length, type, longitudinal and 

lateral locations, and instantaneous speed and acceleration. The following list includes 

descriptions of the four datasets. 

 

(1) The US-101 trajectory dataset was collected on a segment in the vicinity of 

Lankershim Avenue on southbound US-101 freeway in Los Angeles, California. The 

segment is approximately 640 m in length and contains 6 lanes.  

(2) The I-80 trajectory dataset was collected on a segment of I-80 freeway in 

Emeryville (San Francisco), California. The segment is approximately 500 m in length 

and contains 6 lanes, where the median lane is a high occupancy vehicle (HOV) lane.  

(3) The Peachtree trajectory dataset was collected on a segment of Peachtree 

Street in Atlanta, Georgia. The arterial segment is approximately 640 m in length, with 

five intersections (four are signalized and one is not) and two or three through lanes in 

each direction.  

(4) The Lankershim trajectory dataset was collected on a segment of Lankershim 

Boulevard in the Universal City neighborhood of Los Angeles, California. The 

segment is approximately 488 m in length and contains three or four lanes and four 

signalized intersections. 

 

Through the NGSIM program, FHWA will create a number of driver behavioral 

algorithms that form the core logic of microscopic traffic simulation models, together 

with supporting documentation and validation datasets. These algorithms will explain 

how multimodal passengers interact with automobiles, highway infrastructure, and 

other environmental factors including congestion, delineation, and traffic lights. 

Transportation practitioners will be able to use microsimulation software with more 

assurance knowing that traffic simulation experts developed the algorithms using 

high-quality, real-world datasets as a result of the core simulation algorithms 
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developed through NGSIM ultimately being incorporated into commercial simulation 

models. 

 

   2.2.2.2 The Applications of NGSIM 

The NGSIM datasets generally offer two key benefits for transportation research. The 

first is its high resolution, which enables studies of extremely specific driving 

behaviors and calibration or estimation of minute behavioral characteristics and 

variables. The second benefit is its accuracy in capturing traffic patterns, which gives 

researchers a comprehensive picture of actual traffic throughout the collecting time 

and at the collection sites. Making use of the benefits, these research studies primarily 

employed the NGSIM trajectory data in the methods listed below: 

 

• Calibrating or training traffic flow models. 

• Validating models.  

• Demonstrating driving behaviors or traffic phenomena. 

• Conducting analysis of samples. 

• Building simulation environments or testbeds. 

 

Coifman (2015) proposed a technique to estimate the fundamental diagrams without 

needing to look for stationary circumstances. The clue, it was discovered, was vehicle 

length. The suggested approach was used to examine the higher-resolution I-80 dataset 

as a supplement to the loop detector data, enhancing the method’s veracity. 

 

Siqueira et al. (2016) introduced a stochastic transport model with discrete speed 

spectrum and offered an alternative stochastic model for the fundamental diagrams. 

The model parameters and empirical fundamental diagrams were estimated using the 

I-80 dataset, and the estimated results were compared to those produced by the 

proposed model.  

 

In order to study the effects of driver variability on macroscopic traffic flow relations, 

Jabari et al. (2014) suggested a stochastic variant of the macroscopic traffic flow 

speed-density relation. The first 15 minutes of I-80 data (4:00 to 4:15 p.m.) were used 

to estimate the distributions of the model’s parameters, and the next 30 minutes (5:00 

to 5:30 p.m.) were used to draw an empirical speed distribution that was then 

contrasted with the outcomes of the simulation. 

 

By taking into account vehicle acceleration in crowded traffic, Wu and Coifman (2014) 

suggested a length-based vehicle classification approach from dual-loop detectors. The 

I-80 dataset was utilized to test the effectiveness of the suggested vehicle 

categorization approach by establishing virtual loop detectors. The high-fidelity 
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NGSIM datasets’ vehicle length information allows for the evaluation of the vehicle 

length-based study. 

 

Past research has sought a better understanding of how to utilize the NGSIM in the 

macroscopic traffic variables estimation. Based on the literature review as presented 

above, Table 1 exhibits a summary of the existing studies using NGSIM data. 

 

Table 2. Summary of Macroscopic Traffic Variables Estimation Using NGSIM 

No. Author, Year Dataset Main Usage of Data 

1 Coifman, 2015 I-80 
Being analyzed by using the proposed method as a 

complement of loop detector data 

2 Siqueira et al., 2016 I-80 
Calibrating model parameters and estimating the 

referred fundamental diagram 

3 Jabari et al., 2014 I-80 

Calibrating the distributions of model parameters 

using the (first 15 min) I-80 data, and validating 

model by comparing with speed distributions 

(other 30 min) 

4 Wu and Coifman, 2014  I-80 
Evaluating performance of the proposed method 

after setting virtual loop detectors 

 

2.3 Traffic Simulation Models for CAVs 

This section provides a wider analysis of studies focusing on the development or 

application of simulation models of traffic with CAVs, including the variable input and 

control methods that are relevant in describing the traffic dynamics and mutual interactions 

of CAVs. 

2.3.1 Classification of Traffic Simulation Models  

  Simulation models can be distinguished from the macroscopic level (where traffic is 

represented in terms of relations between aggregated values such as speed, flow, and 

density), through the mesoscopic level (where cars travel in homogeneous packets and 

only alter their behavior in response to special events, like turning or stopping before a red 

signal), to the microscopic level. The wide variety of models that are accessible is 

warranted since traffic models are just approximate representations of extremely 

complicated and unpredictable real-world traffic systems, and different models may be 

appropriate for different demands and applications. 
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  There are currently no actual field data for CAVs, several academics create micro- 

simulation or macro-simulation models to assess the implications of CAVs. This is mainly 

due to the lack of a car-following model that could accurately capture the car-following 

features of CAVs. Additionally, each simulation research used a different methodology and 

examined a specific performance indicator (e.g., micro stability, throughput, acceleration, 

headway profiles, macro link traffic volume, and link travel time). In this review, we 

primarily concentrate on the microsimulation-based research studies that take longitudinal 

dynamics into account.  

  

2.3.2 Simulation-Based Car-Following Models for CAVs 

  Although some microscopic models are used more frequently than others, there are 

no standardized techniques, making it challenging to contrast various models. The absence 

of empirical CAVs data that might be utilized to precisely calibrate and validate models is 

one of the key factors. Additionally, CAV algorithms are still being developed. It could turn 

out that CAV control algorithms in actual traffic can be improved by using microscopic 

simulation models of CAVs.   

 

  The Microscopic Model for Intelligent Cruise Control Simulation (MIXIC) was 

created by Van Arem and De Vos (1997). The MIXIC is one of the models that have been 

most frequently used for cooperative intelligent vehicle simulations since it was an early 

intelligent vehicle model. Its broad use stems from the following factors: 

 

 By transferring speed, acceleration, and/or braking capabilities between the 

antecedent and subsequent vehicles, the MIXIC model contains V2V 

communication. Better CACC characteristic simulations are made possible by 

such model capacity. 

 The model is calibrated for various two, three, and four lane scenarios, 

producing a well-adjusted traffic flow model that is consistent with actual 

circumstances. Additionally, if a full calibration of a vehicle’s performance was 

unavailable, the MIXIC results were proven to be trustworthy. 

 

  Treiber and Hennecke (2000) were the creators of the original intelligent Driver 

Model (IDM). The IDM is the most popular model for CAV simulations because it 

produces a realistic acceleration profile in a single lane environment and is one of the 

easiest and accident-free models available. The IDM’s features are more similar to those of 

ACC cars than they are to those of a human-driven vehicle since it lacks an explicit 

response time and is provided as a continuously differentiable acceleration function. The 

IDM itself may be used as an ACC or a model for a human-driven vehicle by altering a few 

settings. 
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2.3.3 Microscopic Simulation-Based Studies for CAVs 

  Numerous studies considered a range of potential market-penetration rates for CAVs. 

A tiny number of studies exclusively modeled the extreme 100% penetration rate of CAVs 

without taking progressive growths into account. The research studies that examined this 

aspect with an emphasis on the simulation-based CAV modeling investigations are shown 

in Table 3. 

 

  A novel family of simulation models was created by VanderWerf et al. (2001), and 

they include the crucial aspects of driver behavior and control system architecture that 

have an impact on the dynamics and capacity of traffic flow. The impacts of new driver aid 

technologies, including adaptive cruise control (ACC), on traffic flow dynamics and 

capacity are predicted using a set of mathematical models. For the purpose of 

demonstrating that the models are delivering accurate results, example outputs from 

simulation validation test cases are presented and discussed.   

 

  An adaptive cruise control (ACC) technique was introduced by Kesting et al. (2007), 

in which the driving style and acceleration characteristics automatically adjust to changing 

traffic conditions. The concept consists of three parts: the actual ACC, which is 

implemented as a car-following model; an algorithm for automatically determining the 

traffic situation in real-time using local data; and a driving strategy matrix to modify the 

driver’s characteristics, or the ACC controller’s parameters, to the traffic conditions. 

 

  To test system performance with various AV ratios, Zhou et al. (2017) created a 

cooperative intelligent driver model. The findings demonstrated that an increasing 

proportion of AVs would cut down on overall travel time and smooth out traffic 

oscillations with the use of an appropriate vehicle-to-vehicle regulating mechanism. 

 

  Talebpour and Mahmassani (2016) provided a framework for simulating various 

vehicle kinds with varying communication capabilities using various models with 

technology-appropriate assumptions. This framework’s stability study of the ensuing 

traffic stream behavior for various connected and autonomous car market penetration rates 

is shown. According to the investigation, string stability may be raised by linked and 

autonomous cars. 

 

  A microscopic simulation framework was developed by Rios-Torres and 

Malikopoulos (2017) to evaluate the effects of CAVs on traffic flow at merging highways 

and the consequences for fuel consumption and journey time. The simulation findings 

demonstrated that CAVs may significantly reduce fuel consumption and trip time for a 

variety of traffic circumstances under scenarios of average and severe congestion. 

 



14 
 

  In order to include novel algorithms that are critical to describing the interactions 

between CACC cars and manually driven vehicles in mixed traffic, Liu et al. (2018) 

expanded a state-of-the-art CACC modeling framework. To create the high volume traffic 

flow that is anticipated to emerge as a result of the CACC string operation, the upgraded 

modeling framework implements a new vehicle dispatching model. To provide realistic 

CACC vehicle behaviors in highway on/off-ramp zones where traffic disruptions could 

regularly interfere with the CACC string operations, the framework additionally includes 

new lane change rules and automatic speed control algorithms. 

 

Table 3. Simulation-Based CAV Modeling Studies 

No. Author, Year Models Objectives 

1 
VanderWerf et 

al., 2001 

An error-based ACC 

and CACC. The lane 

change is human 

control. 

Develop the ACC and CACC car-following 

models and estimate their impact 

2 
Kesting et al., 

2007 
IDM 

Propose the ACC-based traffic-assistance system 

intended to improve traffic flow and road capacity 

3 
Zhou et al., 

2017 

The Full Velocity 

Difference Model 

(FVDM) and IDM 

Develop a cooperative IDM (CIDM) to examine 

the system performance under 

different proportions of the AVs. 

4 

Talebpour and 

Mahmassani, 

2016 

MIXIC for AV. 

IDM for CAV. 

Propose an acceleration framework to address the 

limitations of micro-simulation models 

in capturing the changes in driver behavior in a 

mixed environment 

5 

Rios-Torres and 

Malikopoulos, 

2017 

Optimal control for 

CAVs. Gipps model 

for manual 

vehicles 

Develop a micro-simulation framework for CAVs 

to analyze the impact on fuel consumption and 

travel time. 

6 Liu et al., 2018 

CACC and 

anticipatory lane 

change (ALC)  

 

Extend the CACC modeling framework to 

incorporate new algorithms describing the 

interactions between the CACC and 

manual vehicles in mixed traffic. 

 

2.4 Traffic Prediction Methods   

  The CAV system’s key component for addressing issues with traffic congestion is 

traffic prediction. To avoid a breakdown in traffic flow, the forecasted traffic information 

may be distributed to traffic control towers, RSUs, drivers, and CAVs. Furthermore, an 

ideal routing strategy and traffic management may be carried out using traffic estimations. 

Other important applications for traffic prediction include vehicle route planning, traffic 

signal optimization, and real-time congestion control. 
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  Traffic prediction is affected by various factors such as – forecasting horizon, 

sampling frequency, algorithms, type of dataset, type of area, data source etc., which is 

shown in Table 4.  

 

   The span of time in the future during which traffic prediction is conducted is known 

as the forecasting horizon. According to Ishak and Al-Deek, the models’ accuracy 

decreases as predicting horizon increases (2002). Additionally, the prediction becomes 

more difficult as the predicting horizon grows shorter. According to the Highway Capacity 

Manual, the optimal forecast interval is a 15-minute interval (Smith and Demetsky, 1997). 

The impact of forecast time horizon on the precision of short-term traffic prediction was 

studied by Larry (1995). However, the majority of methods in the literature were created 

for short-term forecasting. 

 

  Sampling frequency and aggregation rate play a key role in data resolution. The 

inaccuracy decreases as the amount of aggregation increases. However, compared to 

historical values, more recent traffic data observations could serve as superior forecasters 

(Polson and Sokolov, 2017). 

 

     The two categories of algorithms are univariate and multivariate. While a 

multivariate technique uses numerous sites for input and output, a univariate approach just 

monitors traffic characteristics from a single site. Multivariate models, as demonstrated by 

Kamarianakis and Prastacos in 2003, better capture observations made at many times and 

places than univariate models. 

 

     The type of area that describes the area of data collection for carrying out 

experiments of traffic flow prediction is another important consideration. Examples include 

freeways, urban arterials, highways, etc. In this situation, sensor-based traffic data from an 

arterial route has data values that are significantly longer than data from a local road. 

 

  Highway traffic flow has a cyclic and dynamic character, according to Li and Liu’s 

(2014) research. Additionally, compared to the highway, it is more challenging to estimate 

traffic flow in urban areas due to signalization limitations (Vlahogianni et al., 2000; Zhang 

and Huang, 2018). 

 

  Whether a real or simulated dataset is utilized for experimentation depends on the 

type of dataset. The source of the data used to calculate traffic flow numbers is represented 

by the data source, for example, loop detectors, sensors, GPS, crowdsourcing, social media, 

and floating car data. 

 

Table 4. Factors Affecting the Traffic Prediction 

Factors Descriptions 

Forecasting horizon Range of time ahead to which traffic prediction is carried out. 
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Sampling frequency General about 5 minutes 

Algorithms Univariate and multivariate 

Type of area The area of data collection for implementing experiments 

Type of dataset Real or simulated 

Data source Loop detectors, sensors, GPS, crowdsourcing, social media, floating car  

2.4.1 Traditional Methods 

  One of the first techniques for anticipating traffic demand is based on the analysis 

and forecasting of time series of observed historical data. Techniques used in time-series 

models include non-linear regression, smoothing, averaging algorithms, seasonal ARIMA 

(SARIMA) models, and others. The most popular time series approach for predicting 

traffic is the autoregressive integrated moving average (ARIMA) model, which assumes 

that traffic conditions are a static process with unaltered mean, variance, and 

auto-correlation. 

 

  The autoregressive-moving average (ARMA) model has been expanded to create 

the ARIMA model. To forecast next series points, this model is specifically used to analyze 

the time-series data. The acronym for the ARIMA model is ARIMA (p, d, q), where p, d, 

and q stand for the moving average, integrated, and autoregressive polynomial orders, 

respectively. In order to forecast short-term highway traffic flow, Mohammed et al. 

introduced the ARIMA model in 1979. After ARIMA, numerous variations of ARIMA 

were proposed to increase prediction accuracy for traffic flow prediction, including 

SARIMA (Williams and Hoel, 2003), Kohenen ARIMA (KARIMA) (Van Der Voort et al., 

1996), ARIMA with explanatory variable (ARIMAX) (Williams, 2001), and Vector 

ARIMA (Gallego, 2009).  

 

  The historical average (HA) approach, which uses an average of historical traffic 

data to forecast future traffic flow, is another way to deal with traffic flow data. This 

approach is based on how traffic flow is cyclical. However, this approach does a poor job 

of adjusting to unanticipated situations like accidents. For instance, Stephanedes et al. 

(1981) enhanced traffic flow prediction and real-time control using the HA approach with 

fewer calculations and less data. 

 

  The Kalman filtering (KF) method is another widely used parametric technique for 

time-series models and is typically used in nonstationary stochastic environments. The 

benefit of KF is that it allows for seamless updating of certain state variables. However, 

erratic traffic patterns could cause a shift in how traffic is moving. The estimation of an 

accurate traffic flow prediction is made harder by these unsteady flow characteristics and 

also by environmental elements that are not explicitly stated. Additionally, the KF 

technique produces predictions that are either overpredicted or underpredicted. 
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  For handling data on traffic flow, Bayesian networks are helpful since they give 

matching variances in addition to the mean value of prediction. Additionally, when fresh 

data becomes available, this model may update the prediction findings. The probability 

distribution between the input and output of traffic flow data is likewise seen by the 

Bayesian network. Sun et al. (2006) used geographical historical traffic data from a nearby 

road link to create a Bayesian model to forecast traffic flow for a segment.  

 

  For forecasting traffic flow, researchers frequently employed the non-parametric 

methodologies k-NN and SVR. They both fall under the category of shallow ML 

approaches. K-NN was used by Davis and Nihan to forecast short-term highway traffic 

(Davis and Nihan, 1991). The suggested k-NN model, according to the authors, performs 

similarly to the linear time series technique but not better. 

 

  Support Vector Regression (SVR) is a supervised machine learning technique that is 

mostly used for classification and regression. It is trained to learn a function to transfer 

input features to output. The goal of SVR is to map input data to a high-dimensional 

feature space, and then use that same space to conduct linear regression. Here, the dataset 

is initially displayed with each item as a point in n-dimensional feature space. The next 

step in classification is to find the hyperplane that categorizes the input. Compared to NN, 

SVR uses the Structural Risk Minimization (SRM). Additionally, it ensures localization of 

global minima. However, despite the fact that both of these approaches are nearly identical, 

they differ in the kind of value they provide as a result (SVR outputs a real number 

whereas SVM outputs either 0 or 1). The accuracy of traffic flow prediction is examined 

using a supervised online support vector regression technique by Neto et al. (2009) under 

both typical and exceptional traffic scenarios. 

 

A comparison of the above discussed models has been presented in Table 5. 

 

Table 5. Traditional Models for Traffic Prediction 

Model Strengths Weakness 

ARIMA 

(Box-Jenkins 

model) 

  

• Linear patterns • Focus on means and miss the 

extremes  
• Bad on rapid fluctuations  
• Software dependent 

  • Requires sufficient data 

HA • Easy to implement  • Bad on unexpected events 

• Fast execution 
 

• Longer horizon • Computationally expensive 

KF  • Updated continuously • Assumes dependent and independent 

variable 

• Multivariate environment • Gaussian hypothesis 

• Need limited data   
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Bayesian 

Network 

  

• Density function • Can’t handle high dimensional data 

• Update new information   

k-NN • Noisy data • Can’t handle spatial and temporal 

modeling simultaneously 

• Large data 
 

• Fast execution   

SVM 

  

• Don’t assume any underlying 

relationship about data form 

• Not good for linear patterns 

• Even unstructured data  • Time consuming  

• High dimensional data   

 

2.4.2 Machine Learning Terminology 

  Supervised Learning and Unsupervised Learning are the two primary categories into 

which machine learning techniques fall. Input data for supervised learning algorithms must 

include labels that are specific about the naming of the data. It intends to carry out the two 

main objectives of classification and regression. Unsupervised learning, in contrast, 

identifies patterns and distributions within the provided data sets. It also entails the 

challenges of density estimation and grouping. 

 

  Self-learning traffic prediction algorithms fall generally into two categories: 

parametric and non-parametric. Researchers, however, chose non-parametric approaches 

over parametric methods due to the stochastic, indeterministic, and non-linear nature of 

traffic flow data. The taxonomy of the traffic flow prediction model is displayed in Figure 

1. 

 
Figure 1. Taxonomy of the Traffic Prediction Models 

 

  A subset of machine learning called deep learning (DL) tries to build a 

computational model with numerous processing layers to accommodate high-level data 
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abstraction. Without human intervention, DL can automatically extract features from data 

to discover latent relationships between various data set properties (Shickel et al., 2018). 

DL models have shown reliable results when compared to conventional ML techniques. 

The human nervous system serves as an inspiration for DL concepts. In light of this, the 

bulk of DL architectures are created utilizing the ANN framework. A single neuron termed 

a perceptron serves as the structural foundation of NN. It accepts several inputs, analyzes 

them using a weighted summation of inputs, and then passes the processed data to an 

activation function to produce the output. 

 

  Data on traffic flow are measured using both geographical and temporal methods. 

While spatial correlation describes the correlation between traffic flow of the target road 

segment and simultaneous sample values of its nearby and distant areas for the same time 

interval, temporal correlation defines the correlation between current and historical traffic 

flow samples collected with a temporal span. For instance, incidents on a road that 

occurred two hours ago might result in gridlock on nearby connecting roads for the next 

three to four hours. 

2.4.3 Deep Learning Methods 

  Most traditional ML-based traffic prediction techniques cannot uncover deep 

correlation in traffic data. Non-parametric approaches are increasingly frequently used for 

prediction since traffic flow has complicated and non-linear patterns. 

 

  The flowchart for building DL architecture (Miglan and Kumar, 2019) for traffic 

flow prediction is shown in Figure 2. Real-time raw data that was recorded is first 

transformed into a standard format. The input data is then split into a training set and a 

testing set. The DL model is then trained, and the parameters are changed until the 

evaluation parameters (which measure the cost and performance requirements) are below a 

predefined threshold. The evaluation of the forecast outcomes and testing of the testing 

data comes last. 
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Figure 2. Flowchart of Implementing DL Models 

 

2.4.3.1 Supervised DL Techniques for Traffic Prediction 

 

Hua and Faghri (1994) proposed the concept of traffic information prediction using 

NNs, where ANNs were utilized to estimate vehicle journey time. Since then, many 

NN models for forecasting traffic data have emerged. Smith and Demetsky created a 

NN model in the early 1990s, for which they compared to the conventional approach 

of traffic prediction. The findings showed that NNs outperform conventional ML 

models at peak periods (Smith et al., 1994). 

 

A cooperation-based ANN model for predicting urban traffic flow was suggested in the 

study of Ledoux (1997). The model forecasts traffic flow for the following 60 seconds 

using past traffic flow data that has been simulated. First, the traffic patterns on a 

signalized connection were modelled using a single ANN. The data was then shared 

across linked local NN to simulate traffic flow at a junction. 

 

By combining the prediction output from an online KF and NN with a fuzzy 

rule-based system (FRBS), Stathapoulos et al. (2008) created a hybrid NN model. 

According to the findings, hybrid prediction performs better when urban traffic flow 

becomes more non-linear, unpredictable, and highly variable. 

 

Different situations from incident and typical regions are represented by the work zone 

area. For such planned work zone locations, Hou et al. (2015) offered 4 alternative 

models for both short-term and long-term traffic prediction. These four models are 

non-parametric regression, regression tree, MLFFNN, and RF. However, these ideas 

marked the first-time traffic prediction that had been done utilizing RF and regression 

tree approaches. For both long-term and short-term forecasts, RF method yields the 

highest degree of precision. 
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Parmula (2018) sought to investigate the use of NN in traffic flow prediction in the 

event of input data loss. They computed the difference between the sensitivity of data 

loss for the MLP and AE models in their investigation. The results of the experiment 

showed that MLP provides superior accuracy than AE in case of data loss. 

 

Table 6 provides a comparison of the above discussed research studies. Notably, all 

these studies are based on short-term prediction horizon. 

 

The field of vision-based traffic flow prediction makes use of CNNs. Historical data is 

shown as a picture in issues of traffic flow prediction based on CNN. Additionally, 

CNNs are able to represent topological locality, i.e., they can identify patterns between 

inputs that are close to one another. 

 

In a recent work, Chung et al. (2018) used video footage and a deep CNN technique to 

count the number of automobiles on a specific road stretch. CNNs may extract spatial 

correlation of traffic flow by employing a multi-layer convolutional structure. 

 

Liao et al. (2018) developed a model that combines ensemble learning and random 

subspace learning on deep CNN to address the issue of incomplete data. They showed 

that CNN, SAE, and DBN outperform NN and SVR in comparison to their suggested 

model and SAE, DBN, NN, and SVR. 

 

Conventional CNNs can only be modeled for grid-based data (image and voice, etc.). 

Additionally, each network’s traffic flow data may always be translated to a certain 

graph structure. Graph Convolution NN (GCNN), which extends the convolution 

operator from regular to irregular data, is devised in this context (Duvenaud et al., 

2015; Defferrard et al., 2016). Similar to this, Yu et al. (2017) used simply CNN 

structure to simulate the spatial-temporal properties of a traffic dataset that was 

structured as a graph. The proposed graph convolution network outperforms the 

RNN-based model during the training phase. 

 

Table 6. ANN and MLP- Based Traffic Prediction Studies 

No Author Year DL SF 

(min) 

Source Area Comparison 

1 Smith et al. 1994 ANN 15 Sensors: Capital 

Beltway, Virginia 

Freeway HA, ARIMA 

2 Ledoux 1997 MLP - Simulation 

Semi 

Macroscopique 

traffic 

Urban - 
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3 Stathapoulos 

et al.  

2008 ANN + 

KF 

3 LD: Alexandras 

Avenue in Athens, 

Greece 

Urban 

arterial 

ANN, KF 

4 Hou et al.  2015 MLFFNN 60 Sensors: I-270, 

MO-141 in 

St.Louis, MO, 

USA 

Work Zone, 

signalized 

arterial 

– 

5 Parmula  2018 MLP + 

AE 

5 LD, VD: Gliwice 

Traffic Control 

Centre  

Urban  – 

LD: Loop Detectors, VD: Video Detectors 

 

RNNs provide a feedback loop that runs from the next input to the interim output and 

is only suitable for temporal modeling. The issue of vanishing gradient and inflating 

gradient causes conventional RNN to fail when attempting to anticipate traffic over a 

lengthy period of time. Variants of RNN, including as LSTM, GRU, and TDNN, are 

frequently employed in forecasting short-term traffic flow in the network to address 

these challenges. Ma et al. (2015) employed LSTM NNs for the first time in the field 

of transportation. 

 

Qiao et al. (2017) suggested another LSTM-based approach with the aim of obtaining 

periodic features as well as geographical and temporal characteristics of traffic flow. 

Repeated conduct by an individual is one of a person’s periodic traits. 

 

When combined with meteorological data from Beijing, the LSTM model’s prediction 

accuracy was tested by Zou et al. (2018) utilizing GPS tracked data from cabs. It has 

been demonstrated that when training time is increased, the RMSE of the model drops. 

Additionally, the introduction of fine-grained and high-resolution data might make 

LSTM model training more difficult due to the rise in model parameters. 

 

Abbas et al. (2018) presented a method to address this problem in which the road 

network was first divided into smaller segments before an LSTM model was used to 

train the data gathered inside those segments. It has been demonstrated that 2-layer 

stacked LSTM enhances model accuracy when compared to conventional design. 

 

Fu et al. (2016) applied GRU for the first time in the field of traffic flow prediction. 

Results showed that GRU NNs outperforms LSTM NNs in terms of performance. 

 

Zhang et al. (2018) carried out a research that takes the weather into account while 

analyzing traffic statistics for a certain time period. Therefore, a model based on GRU 

and DNN was utilized to enhance the predictions of traffic flow. However, the dataset 

that was utilized to draw conclusions was rather limited. 
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The deterioration problem suggests that not every model is equally simple to optimize. 

ResNet is discovered to provide a solution to the degradation issue in this scenario. In 

order to estimate traffic flow, Zhao et al. (2018) suggested a variant of GRU called 

PARALLEL-RES GRU. In this case, authors aimed to create a parallel architecture for 

converting a deep model into a multi-shallow residual model that effectively avoids 

deterioration. 

 

Another short-term traffic flow system based on TDNN and optimized using Genetic 

Algorithm was proposed by Abdulhai et al. in 1999. (GA). AI-powered GA is capable 

of searching across very complicated areas with several local minima. 

 

Gao et al. (2013) suggested a technique that combines WA and ANN in order to 

concentrate on the characteristics of time-variation and uncertainty of urban arterial 

traffic flow. To address the drawbacks of sluggish convergence, they adopted 

momentum factor as a training procedure in this instance. 

 

Feng et al. (2017) suggested a traffic prediction system employing wavelet function 

and extreme machine learning to increase forecast accuracy (EML). ELM is an 

enhanced single hidden layer FFNN that offers quick learning and strong 

generalization capabilities. 

 

Table 7 provides a comparison of the previously described approaches based on CNN, 

RNN, LSTM, GRU, TDNN, and WNN. 

 

Table 7. NN-Based Traffic Prediction Studies 

No Author Year DL SF 

(min) 

Source Area Comparison 

1 Chung et 

al.  

2018 CNN – VD – – 

2 Liao et 

al.  

2018 CNN – LD: California 

PeMS  

Freeway SVR, NN, 

SAE,  

3 Yu et al.  2017 CNN 5 LD + Sensors: 

BJER4, 

Caltrans PeMS 

(Beijing) 

Highway, 

freeway  

HA, LSVR, 

ARIMA, 

FFNN, LSTM, 

FC-LSTM    

4 Ma et al.  2015 LSTM 2 RTMS 

Detector: 

Beijing Ring 

Road 

Expressway Elman NN, 

TDNN, 

NARX, NN, 

SVR, ARIMA, 

KF 

5 Qiao et 2017 LSTM  1 Sensors: Urban SVM, ARIMA 
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al.  Qingdao  arterial 

6 Zou et al.  2018 SLSTM  – GPS: TaxiBJ, 

BikeNYC 

Urban 

arterial 

– 

7 Abbas et 

al.  

2018 SLSTM   1 Sensors: 

Motorway 

control system 

in Stockholm 

Highway – 

8 Fu et al.  2016 LSTM, GRU 0.5 Sensors: PeMS Freeway ARIMA 

9 Zhang et 

al.  

2018 GRU  60 Sensors: 

Caltrans PeMS  

Freeway – 

10 Zhao et 

al.  

2018 PARALLEL– 

RES GRU 

10 Sensors: UCI’s 

PEMS-SF 

Freeway GRU 

11 Abdulhai 

et al.  

1999 TDNN+ 

GA 

30s LD: 

Interstate-5 

Orange county, 

California 

Freeway MLFFNN 

12 Gao et al.  2013 WNN 5 Traffic flow 

data,Qingdao  

Urban BP 

13 Feng et 

al.  

2017 WA, Eetreme 

ML  

20s Canadian 

Whitemud 

Drive data 

Highway R2 value 

RTMS: Remote Traffic Microwave Sensor 

 

2.4.3.2 Unsupervised DL Techniques for Traffic Prediction 

 

For the first time, Lv et al. (2015) employed layered AE models to exhibit temporal 

and geographical correlations in traffic flow data. In this model, supervised traffic flow 

prediction was accomplished by adding a logistic regression layer on top of the 

network. This concept did not suit well, though, with less information on traffic flow. 

 

Traffic flow was predicted by Duan et al. (2016) both during the day and at night. A 

total of 250 tests were conducted in this study to train an SAE model. Additionally, a 

regression layer was added on top of SAE in this research. It was shown that MAE and 

RMSE are more valuable during the day than at night, and MRE is less valuable 

during the day than at night. 

 

Using a layer-by-layer feature granulation unsupervised learning methodology, Yang et 

al. (2017) created an optimal network topology based on the Taguchi method and 

trained a deep SAE LM model to learn traffic feature. Even while employing more AE 

might enhance the accuracy of AE-based prediction models, the training time may rise 

as a result. 

 



25 
 

A two-level DL model in DBN, which includes a regression layer at the top and a 

DBN at the bottom, was employed by Huang et al. (2014). Multitask learning (MTL), 

in which many tasks are combined and the model is trained concurrently, is made 

possible by this method. 

 

Koesdwiady et al. (2016) developed a rainfall integrated DBN and LSTM model that 

takes into account the influence of rainfall component in traffic flow data in order to 

study DL models with multi-source data inputs. The outcomes showed that taking 

weather into account greatly increases forecast accuracy. 

 

The dynamic nature of traffic statistics means that the flow of traffic does not always 

follow the same pattern throughout the day. For instance, daytime traffic density is 

higher than nighttime traffic density. Zhang et al. (2018) used GA in this situation to 

derive the ideal hyperparameter for the DBN for various time intervals. 

 

Table 8 compares the unsupervised DL methods for forecasting traffic that were 

previously covered. A comparison of following discussed DL models for traffic 

prediction is provided in Table 9. 

 

Table 8. AE and DBN-Based Traffic Prediction Studies 

No Author Year DL SF 

(min) 

Source Area Comparison 

1 Duan et al.  2016 SAE 15 PeMS Freeway – 

2 Yang et al.  2017 SAE 

(optimal 

structure) 

1 M6 freeway, 

UK 

Freeway EXP-LM, 

PSONN, 

RBFNN  

3 Huang et al.  2014 DBM 15 PeMS, 

Highway 

system of 

china 

Freeway, 

Highway 

– 

4 Koesdwiady 

et al.  

2016 DBM  5 PeMS Freeway ARIMA, ANN 

5 Zhang et al.  2018 DBN, GA 0.5 PeMS Freeway ANN, SAE, 

RNN, RW 

EXP-LM: Exponential smoothing and the LM algorithm with NNs (EXP-LM), PSONN: Particle 

swarm optimization algorithm with NNs 

 

Table 9. Comparison of DL Methods 

Model Strengths Weakness 
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ANN • Non-linear  • Falls in local optimization 

  • No assumption  • Bad on complexed problems 

MLP • Fault tolerance • Bad on sequence and time series data 

  • Self-learning  • Long training time 

CNN • Image recognition  • Need large amount of training  

RNN • Dynamic  • Updates multiple parameters  

  • Temporal dependency • Exploding gradient 

WNN • Self-learning  • Lacking basis on selecting parameters  
• Fault tolerance 

 

  • Wavelet transform time-frequency 

localization 

  

AE • Feature extraction • Time complexity  

  • Reduces dimensional feature space   

DBN • Classification • Time complexity due to parameter 

initialization 

  • Uses of hidden layers effectively   

 

2.4.3.3. Hybridizations of DL Methods for Traffic Prediction  

 

LSTM and CNN were coupled by Wu et al. (2016) to forecast traffic flow. While 

LSTM obtains temporal information from the traffic data, CNN in the model captured 

spatial patterns. As a next step, characteristics from the LSTM and CNN modules were 

combined to enhance traffic flow prediction. Conv-LSTM is a model created by Liu et 

al. (2017) that also combined CNN and LSTM. 

 

Another DNN that combines CNN and LSTM was proposed by Duan et al. (2018) to 

extract spatial and temporal characteristics from GPS trace data in metropolitan areas. 

The method was trained using a greedy reinforcement method to cut training time and 

increase network accuracy. 

 

Fouladgar et al. (2017) suggested a scalable, decentralized traffic flow prediction 

based on a hybrid CNN/LSTM technique to address the issue of centralization. This 

design was suggested to use the 2D input structure in the field of image processing. 

Additionally, it was found in this research that, in the absence of historical data, traffic 

flow for a junction may be predicted using traffic data measurements from nearby 

nodes. However, as the depth of the network increases, the training of such hybrid 

networks becomes difficult and time-consuming. 

 

Du et al. (2017) suggested a hybrid framework based on CNN and RNN to manage the 

non-linear and non-stationary characteristics of traffic flow data. The latter model, 

which has an LSTM unit, captured short and long term temporal dependencies 

whereas the earlier model collected local trend aspects. 
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A model that incorporates stacked LSTM and AE was proposed by Yu et al. (2017) to 

assist in bridging the gap between supervised and unsupervised learning. With the use 

of a linear regression layer, these two models were integrated. The latent 

representation of static characteristics across accidents was extracted using AE. The 

idea was assessed using data that has been pooled every five minutes. 

 

A hybrid model for predicting traffic based on decomposition was proposed by Zhong 

et al. (2018). This model used a mode decomposition and mode combination technique 

to first examine the periodic and random characteristics of the traffic flow data. Next, 

prediction models were adjusted to the subsequence’s complexity. According to the 

complexity of the subsequence, authors established integration of the BP, 𝜖-SVR, and 

LSTM models in this work. 

  

A comparison of the above discussed hybrid models is provided in Table 10. 

 

Table 10. Comparison of Hybrid DL Based Traffic Flow Prediction Proposals 

No Author  Year DL SF 

(min) 

Data 

Source 

Area   Comparison 

1 Wu et al. 2016 CNN + 

LSTM 

5 PeMS Freeway   LSTM, SAE, 

Gradient 

boosting 

regression 

2 Liu et al. 2017 CNN + 

LSTM 

0.5 PeMS Freeway   CNN-LSTM 

3 Duan et 

al. 

2018 CNN + 

LSTM 

30 GPS: Xian 

taxis 

trajectory 

data 

Urban 

arterial 

  Linear 

model, CNN, 

LSTM 

4 Fouladgar 

et al. 

2017 CNN+ 

LSTM 

5 Sensor: 

PeMS 

Freeway   – 

5 Yu et al. 2017 AE +  

LSTM 

5 California 

highway 

patrol, 

LA 

Department 

of 

transportatio

n 

Highway

, 

Arterial 

streets 

  ARIMA, 

RW, 

HA, 

SARIMA 

6 Zheng et 

al. 

2018 NN+SVR 

+LSTM 

5 PeMS Freeway   – 
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Chapter 3. Freeway Speed Prediction Methods 

3.1 Introduction 

      Traffic speed prediction is a regression issue related to time series data which can 

be stated as follows. Let 𝑋𝑖
𝑡 represent the observed traffic speed at i th point during the t 

th time interval on a freeway. Providing a sequence {𝑋𝑖
𝑡} of observed speed, i = 1, 2, . . . , 

N, t = 1, 2, . . . , T, the task is to predict the traffic speed at time (t + Δ) for horizon size Δ. 

Without any assumptions, deep neural networks (DNNs) are a type of Artificial NNs 

inspired by human neurons. It can mine traffic data by extracting features generated by 

hierarchical and distributed architecture. CAV should be able to anticipate its future speed 

based on the current state of its leading vehicle. Deep learning techniques, a relatively new 

field of technology, have proven to have highly sophisticated computational capabilities. In 

this chapter, the suggested deep learning approach’s prediction accuracy will be measured, 

and its findings will be compared with the conventional method. 

 

  This chapter is organized as follows. Section 3.2 presents the supervised deep 

learning model for traffic speed prediction. Section 3.3 presents the unsupervised deep 

learning model for traffic speed prediction. Section 3.4 describes the Intelligent Driver 

Model. Finally, in section 3.5, a summary concludes this chapter. 

3.2 Supervised Deep Learning Method 

  Given that Recurrent NNs can remember long-term dependencies, it was 

well-known to handle sequential traffic data. However, it encounters the problem of 

vanishing gradient when timesteps increase. To solve it, the variant Long Short Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) were developed. LSTM was first 

introduced by Hochreiter and Schmidhuber (1997) for language processing and used in 

traffic flow prediction by Ma et al. (2015). Different from RNNs, LSTM regards the 

hidden layer as a memory cell, which makes it outperform RNNs due to its ability to 

flexibly memorize patterns for longer durations. To make the training process more 

effective and concise, GRU was introduced by Chung et al. (2014). It removed the separate 

memory unit without reducing the performance compared to LSTM. Figure 3 shows the 

structure of GRU. 
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  In GRU, the memory unit comprises two gates, namely the reset gate and the update 

gate, which decide what information should be sent to the output layer. It merges the 

input gate and the update gate into the reset gate, which performs similarly to the LSTM 

forget gate in that it selects whether to integrate previous and present information, while 

the update gate determines how much previous information to retain. Equations are given 

below: 

 

𝑟 = 𝜎(𝑋𝑡𝑈𝑟 + 𝑆𝑡−1𝑊𝑟)                                                        (1)                                                                         

𝑧 = 𝜎(𝑋𝑡𝑈𝑧 + 𝑆𝑡−1𝑊𝑧)                                                       (2)                                                                         

ℎ = tanh (𝑋𝑡𝑈ℎ + (𝑆𝑡−1 ∗ 𝑟)𝑊ℎ)                                           (3)                                                 

𝑆𝑡 = (1 − 𝑧) ∗ 𝑆𝑡−1 + 𝑧 ∗ ℎ)                      (4)    

                                                

  Where 𝑋𝑡 is input, r is reset gate, z is update gate, h is hidden state output, 𝑆𝑡 is 

output, all of them are vectors U and W are corresponding weight parameter matrices for 

them. GRU uses the sigmoid function 𝜎 to activate reset and update gate. It outputs a 

value from 0 to 1, where 0 denotes no information go through while 1 denotes all 

information go through the cell state. The tanh function is used to activate the hidden state 

and outputs a number from −1 to 1. 

 

  After the hyperparameter tuning by a manual search, this study designs a 2-hidden 

layers architecture GRU with 32 neuron units. To avoid the overfitting problem, dropout 

regularization (Srivastava et al., 2014) is set as 0.2. RMSprop (Hinton et al., 2012) is 

selected as the optimizer, which is a modification of Stochastic Gradient Descend with 

adaptive learning rates and better in RNNs to prevent local minimum. Mean square error is 

Figure 3. Structure of GRU 
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utilized as the loss function and the goal is to minimize it. Datasets are classified with 128 

batch sizes and trained with 100 epochs.  

3.3 Unsupervised Deep Learning Method 

  Auto-Encoders (AEs) are a typical unsupervised learning method using unlabeled 

training (Liou et al., 2014). AEs are made up of two basic parts: encoder and decoder, 

where the encoder compresses the input x whereas the decoder reconstructs the input x’. 

Similar to the neural network, it also owns one or more hidden layers, and the number of 

units in the input layer and output layer are the same. They can be used for data 

compression and fusion since they generate comparable input at the output layer. 

Backpropagation (BP) algorithms are also used to minimize the error function by adjusting 

the weight parameters, and return a target value that is equal to the input. 

 

  Stacked AEs (SAEs) are the most prevalent AEs variants, in which numerous AEs 

are stacked into hidden layers using greedy layer-wise training (Bengio et al., 2007). Each 

AE receives bottleneck activation vector output from lower layers as input. The mechanism 

of it is to encode the feature vector extracted from the input via an encoder layer, and next, 

the feature from the previous layer is sent to the following layer until the training process 

finishes. Last, the input is reconstructed in the decoder layer. Equations are given below: 

 

𝑦 = 𝑓(𝑊𝑥 + 𝑏)                           (5)             

𝑥’ = 𝑔(𝑊′𝑦 + 𝑏′)                          (6)             

𝜃 = arg min 
1

2
∑ ‖𝑥 − 𝑥′‖2𝑁

𝑖=1                     (7)   

        

  Where f and g are sigmoid functions used to activate the encoder and decoder layer, 

b and b' are the encoder and decoder bias vector respectively, W and W’ are weight matrices 

for encoding and decoding. The parameters are trained by minimizing the error between 

reconstructed and actual input, which are defined as θ. 

 

  This study first designs 3 independent AEs and SAEs that utilize the same hidden 

layer with 128 neuron units. Dropout regularization is set as 0.2. Adam (Kingma and Ba, 

2012) is selected as the optimizer, which is a combination of RMSprop and Momentum 

and used for Backpropagation Through Time. Mean square error is utilized as the loss 

function. To ensure the same iterations, datasets are also classified with 128 batch sizes and 

trained with 100 epochs. 

3.4 Simulated Car-Following Model 

  The Intelligent Driver Model (IDM) is a conventional car-following model based on 

the present state of the object vehicle. The core principle of it involves comparing the 

object vehicle’s desired velocity to its real velocity collected from the sensors, as well as 
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comparing its desired headway to its true headway to determine the vehicle’s acceleration 

rate. Equations are given below: 

 

𝑎 = 𝑎𝑚 [1 − (
𝑣

𝑣0
)

𝛿

− (
𝑠∗(𝑣,∆𝑣)

𝑠
)

2

]                   (8) 

𝑠∗(𝑣, ∆𝑣) = 𝑠0 + 𝑠1√
𝑣

𝑣0
+ 𝑣𝑇 +

𝑣∙∆𝑣

2√𝑎𝑚𝑏
                (9) 

 

  Where the values of all the parameters in this study are adapted from (Treiber et al., 

2000; Liu and Fan, 2021). a is the acceleration rate of the object vehicle, am is the 

maximum acceleration rate and equals 0.73 m/s2, v is the current speed of the object 

vehicle, v0 is the desired velocity and equals the speed limit m/s, δ is the acceleration 

exponent and equals 4, s*(v,Δv) is the desired minimum headway, Δv is the velocity 

difference between the object and the leading vehicle, s is the current headway between the 

object and the leading vehicle; s0 is the linear jam gap and equals 2 m; s1 is the non-linear 

jam gap and equals 3 m, T is the desired headway and equals 1.0 s, b is the comfortable 

deceleration rate and equals 1.67 m/s2. It is worth mentioning that there are five parameters, 

v0 desired velocity, am maximum acceleration rate, b comfortable deceleration rate, T 

desired headway, s0 linear jam gap can be calibrated in the simulation according to various 

scenarios. 

 

  The IDM car-following model is applied in the microscopic “Simulation of Urban 

MObility” (SUMO) to predict the traffic speed, which is an open access platform 

developed by the German Institute of Transportation Systems. It supports multiple 

car-following models including Wiedemann 99, Krauss, IDM, Adaptive Cruise Control 

(ACC), and Cooperative Adaptive Cruise Control (CACC). It contains numerous default 

parameters to describe traffic flow characteristics and driver behavior. But it also allows 

users to input other values for the parameters. SUMO also provides a Traffic Control 

Interface (TraCI) for users to retrieve and change the attribute values of network objects 

during the simulation, e.g., vehicles, roads, traffic lights, and pedestrians. In addition, it 

includes other supporting tools handling network import, operational performance 

measurements, and emission calculations. The default lane-changing model is LC2013. 
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Chapter 4. Experimental Settings 

4.1 Introduction 

  As discussed in the literature review conducted in Chapter 2, this chapter will 

identify potential freeway segment and collect necessary traffic data related to the selected 

freeway segment. The study site used for the conduct of the case study in this paper is a 

basic freeway segment that is selected through the Caltrans Performance Measurement 

System (PeMS) database. This potential freeway has a total length of about 1 mile.  

 

   The following sections are organized as follows. Section 4.2 presents information 

on the selected freeway segment. Section 4.3 presents the data collection and processing. 

Finally, section 4.4 shows the performance evaluation metrics that are used for those three 

models. 

4.2 Potential Freeway Segment 

  The freeway segment is around the city of San Francisco, a large population area. 

The site is selected because of its preexisting congestion issues during the peak hour, and 

because it is the major interstate freeway with high traffic volumes. Figure 4 shows the San 

Francisco part in the PeMS. The study area is a mainline segment of I-80 freeway 

eastbound in the west of Berkeley district (marked with a blue rectangle area). 

 

 
Figure 4. San Francisco Part in the PeMS 
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  Figure 5 provides the global view of the specific study area. It is a total length of 1 

mile section around 10.41 postmile in a two-way interstate road with 5 lanes in each 

direction. 

Figure 5. Global View of the Study Area (Source: PeMS) 

   

Figure 6 provides a detailed configuration of the freeway segment. The starting point 

of the traffic flow is inside the red area. The blue lines in the freeway segment are vehicle 

detector stations (VDS), including vehicle detectors on each lane of the freeway. These 

vehicle detectors collect, store, and process real-time traffic data and sent it to PeMS. Table 

11 shows an example of the roadway information provided by the vehicle detector station 

VDS 405589. 

 

 
Figure 6. Configuration of the Freeway Segment 
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Table 11. Roadway Information of VDS 405589 

Roadway Information (from TSN) 

Road Width 60 ft 

Lane Width 12.0 ft 

Inner Shoulder Width 3 ft 

Inner Shoulder Treated Width 3 ft 

Outer Shoulder Width 10 ft 

Outer Shoulder Treated Width 10 ft 

Design Speed Limit 70 mph 

Functional Class Principal Arterial W/ C/L Prin Arterial 

Inner Median Type Separate Grades 

Inner Median Width 36 ft 

Terrain Flat 

Population Urbanized 

Barrier Guardrail in Median left Roadway 

Surface Base & Surface >= 7" Thick 

Roadway Use Median Lane is HOV Lane 

 

4.3 Data Collection and Processing 

  The data is derived from the Caltrans Performance Measurement System (PeMS), 

which contains data from about 40,000 inductive loop detectors across the highway 

network in California. Each vehicle detector station collects data every 30 seconds and is 

aggregated into 5-minute time intervals. Due to the unique patterns of various sequential 

traffic speed data and that no single pattern can match all the time series data, this study 

uses the information gathered by a unitary detector. 

 

  The experimental scenario is a mainline segment of the I-80 freeway eastbound, 

Berkeley. It is a two-way road with five lanes in each direction, and the average traffic 

speed from south to north is selected. Since the traffic speed data is periodic and its pattern 

can differ between weekdays and weekends. This study collects data from March 1st to 

April 29th on the weekdays of 2022. According to Chen et al. (2012), 5-minute traffic is 

more suitable and predictable. In this experiment, the past 1 hour which is a time sequence 

of 12 data points is used to predict the coming average traffic speed in the next 5 minutes. 

Incorporating the periodicity of traffic data over weeks, the whole dataset is divided into 

training and testing sets. The first 33 days (75%) are used as the training set, and the last 11 

days (25%) are used as the testing set. 

 

  Before training the dataset, normalization is a necessary step to accelerate the 

gradient descent speed (Zhang and Kabuka, 2018). This study first implements a feature 

scaler by the training set, then uses the MinMaxScaler to normalize the training set and test 
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set separately. After scaling, data are normalized from 0 to α, where α is a standardized 

factor that is set as 1 for simpleness. The equation is given below: 

 

𝑠 = 𝛼 ×
𝑥−min (𝑥)

[max(𝑥)−min (𝑥)]
                           (10) 

 

  Considering the size of the dataset and the number of hyperparameters, 90% of data 

is used as training and 10% as validation. Since the sequential traffic prediction needs to 

use the historical speed to predict the incoming speed, the time lag is utilized to divide the 

dataset. The divided dataset still has a time series feature, and this study samples the 

dataset in order and then shuffles it. Given the modularity and user-friendly interface, the 

Keras framework which is released in 2015 is used to train the deep learning models and it 

can run over the popular TensorFlow and Theano. 

4.4 Performance Evaluation Metrics 

  To test the prediction accuracy of different models in a comprehensive perspective, 

there are five metrics mean absolute error (MAE), mean absolute percentage error (MAPE), 

mean square error (MSE), root mean square error (RMSE), and R2 are applied to evaluate 

the performance. Equations are given below: 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑥𝑖 − 𝑥�̂�|

𝑁
𝑖=1                        (11) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑥𝑖−𝑥�̂�|

𝑥𝑖

𝑁
𝑖=1                         (12) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑥𝑖 − 𝑥�̂�)

2𝑁
𝑖=1                       (13) 

𝑅𝑀𝑆𝐸 =
1

𝑁
√∑ (𝑥𝑖 − 𝑥�̂�)2𝑁

𝑖=1                     (14) 

 

Where 𝑥𝑖 is the actual average traffic speed, and 𝑥�̂� is the predicted average traffic speed. 

The lower these metrics, the better the performance. 
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Chapter 5. Results and Discussions 

5.1 Introduction 

  This chapter presents the numerical results of the traffic speed prediction on the 

freeway. The collected traffic speed data is divided into two subsets, the training set and 

the testing set. The training set is used to train the two deep learning models. And the 

testing set is used to predict the accuracy of the three proposed models. The prediction 

accuracy is compared between the deep learning models and the IDM. The chapter is 

organized as follows. Section 5.2 describes the performance of the training set for the 

proposed models. Section 5.3 presents prediction accuracy of different methods. 

5.2 Performance of the Training Set 

  This section first shows the training results for both supervised and unsupervised 

deep learning models, then illustrates the prediction accuracy of three different models and 

compares the performance by the time of day. Finally, the evolution trend is displayed over 

time. Figure 7 shows the changes in loss function of GRU and SAEs. The loss function is 

used to measure the degree of consistency between the estimated value of the model and 

the real value. It is a non-negative real-valued function. The smaller the loss function, the 

better the robustness of the model. The loss rates of the training set with black line drop 

rapidly at the beginning before 20 epochs for both GRU and SAE. With the increase of 

time, the loss rate of the GRU training set tends to remain flat at a relative minimum value 

and is infinitely close to 0. For the GRU validation set, there is a small oscillation at the 

beginning. As the epoch increases, the loss rate continues to decrease, which indicates that 

the network is still learning. It eventually stabilizes and the validation set converges well, 

avoiding underfitting and overfitting problems. For the validation set of SAEs, the 

volatility is significantly larger than that of the supervised learning algorithm. However, it 

finally stabilizes and fits the training set as the epoch increases. From the performance of 

the loss function, both deep learning networks are well trained. 
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Figure 7. The Loss Rate of GRU (Left) and SAEs (Right) 

 

5.3 Prediction Accuracy of Different Methods 

  Table 12 illustrates the performance of each model based on different statistical 

metrics. It can be seen that for the MAE, MSE, and RMSE that describe the absolute error, 

the unsupervised deep learning represented by SAEs is modestly higher than the 

supervised deep learning represented by GRU, and the performances of both are better than 

the traditional IDM model. For MAPE describing a relative error, GRU also performs 

modestly better (3.410%) than SAEs (3.478%), and both outperform the IDM model 

(5.240%). For the degree of fitness, the R2 of them are similar (floating around 0.986), 

demonstrating a relatively good fitting result. Overall, both supervised learning and 

unsupervised learning methods are superior to the traditional simulation-based 

car-following model in the prediction of traffic speed. While the difference between the 

two different deep learning is small, GRU is slightly better than SAEs in time series 

prediction. This plays an important role in the application of prediction technology in ITS. 

 

Table 12. Performance Comparison of Different Models 

Model MAE MAPE MSE RMSE R2 

GRU 1.345 3.341% 4.535 2.130 0.986 

SAEs 1.340 3.347% 4.334 2.082 0.987 

IDM 2.486 5.240% 8.896 2.983 0.986 

 

  Figure 8 demonstrates the prediction of average speed for different models by the 

time of day. The actual value is selected as a baseline with a solid red line. To account for 

the different traffic states, it is divided into three intervals according to the size of the 

traffic flow (with dash blue line), low traffic loads, transition state, and heavy traffic loads. 

 

  For low traffic loads, it can be classified into two time periods, Before congestion 

(0:00-7:00) and After congestion (19:00-0:00). It can be seen that before congestion, both 
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Figure 8. Prediction of the Average Speed of Different Models by the Time of Day 

GRU and SAEs match well with real value. Although IDM model changes more softly, the 

response at high speed is not timely enough. After congestion, the IDM model cannot 

revert to the previous accuracy, and there is a small gap with the original value, but both 

GRU and SAEs can maintain high accuracy. This shows that the deep learning network can 

mitigate cumulative error propagation over time. Given that the IDM model is 

collision-free when the distance between the front and rear vehicles decreases sharply, the 

IDM model will produce strong braking on the target vehicle, which is unrealistic in reality. 

This is also the problem with the simulation-based car-following model. Transition state is 

classified into Buildup of congestion (7:00-10:00, 12:00-15:00) and Dissipation of 

congestion (11:00-12:00, 18:00-19:00). For the buildup of congestion, IDM’s performance 

is inferior to deep learning networks. In addition, IDM still cannot rebound to the previous 

accuracy in dissipation of congestion. According to the length of the congestion time, 

heavy traffic loads are classified into Short-term full congestion (10:00-11:00), Long-term 

full congestion (15:00-18:00). In short-term full congestion, all models have different 

degrees of bias, and the most obvious one goes to the IDM. For long-term full congestion 

(15:00-18:00), the situation is similar to the before congestion state under the low traffic 

loads. The three models perform almost the same, but IDM is smoother and with less 

fluctuation. 
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Figure 9. Speed Distribution for Different Models by the Time of Day 

  This study also investigates the speed distribution for different models by the time 

of day with a heatmap, which is displayed in Figure 4. There are two points worth noting. 

Firstly, for a short period from 10:00 to 10:05, there is a certain prediction delay for both 

GRU and SAEs, and this phenomenon can continue until the congestion dissipates at 18:00. 

But this situation does not exist in the IDM model, which suggests that for short-term 

slowdowns, IDM can detect the buildup of congestion earlier than deep learning networks. 

Another finding is that after congestion at 18:30, all models have a prediction lag of about 

five minutes. But from the dark blue area afterward, the accuracy of deep learning 

networks recovers faster than IDM. The above analysis reveals that deep learning networks 

and simulation-based car-following models have their latent performance features for 

different time dimensions. 
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Chapter 6. Summary 

6.1 Conclusions 

  The development of Intelligent Transportation Systems has given impetus to 

intelligent vehicles, which have the potential to address the traffic congestion problem. 

Meanwhile, it also brings real-time traffic prediction issues. Given the complex and 

dynamic spatiotemporal dependency embedded in traffic data, traditional prediction 

models have many drawbacks.  

 

  In order to improve the accuracy of traffic speed prediction, this study focuses on 

emerging deep neural networks using real-world traffic data. Additionally, a 

simulation-based model is built for intelligent vehicles in SUMO. A series of statistical 

evaluation metrics, MAE, MAPE, MSE, RMSE, and R2 are employed to assess the 

prediction accuracy of the supervised learning method, unsupervised learning method, and 

simulation-based model. The PeMS dataset is used to train and evaluate the constructed 

DNNs, and the results suggest that both GRU and SAEs outperform the traditional IDM 

model in the prediction of traffic speed on the freeway. In addition, there is no difference 

between the deep learning networks, and GRU outperforms SAEs slightly in time series 

prediction. It also demonstrates that car-following simulation-based models and deep 

learning networks both contain latent performance attributes for various time dimensions 

under low, transition state, and heavy traffic loads. This has a significant impact on how 

prediction technology is applied in ITS. The outcomes can assist researchers and traffic 

engineers to improve dynamic traffic control, such as highway operation, bottleneck 

detection, and Level of Service assessment. The predicted traffic speed can also be used for 

further research on variable speed limit control, platooning management, and route 

guidance, etc. 

 

6.2 Future Work 

  This study mainly uses traffic speed as the input for prediction. Future research 

work can introduce hand-engineering factors, such as weather, events, and other traffic 

parameters. Moreover, more spatiotemporal dependency can be captured by more 

advanced deep learning networks. In addition, attention mechanism can be combined to 

model the long sequence data (Zheng et al., 2020). For the simulation environment, it can 

focus on improving the car-following model (Salles et al., 2020). The lane changing model 

can also be considered to better simulate intelligent driving behaviors. Lastly, the 

transferability issue that all adaptive frameworks face could be addressed, especially in 

metropolitan areas. 
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